SCHEME OF COURSES FOR 1st-2nd Semester (Batch-2023 Onwards)

National Institute of Technology Srinagar-J&K-190006

National Institute of Technology Srinagar <u>1st Semester (Group A)</u> <u>Civil/ Mechanical/ Chemical/ Mett. & Mat Science</u>

S. No	Course	e Course Title	Department	1				
	Code		Offering		L	Т	Р	Total
A11	HST101	Basic English and Communication Skills	Humanities	3	3	0	0	3
A12	MAT101	Mathematics I	Mathematics	3	3	0	0	3
A13	EET101	Basic Electrical Engineering	Electrical	3	3	0	0	3
A14	ITT101	Computer Programming	Information Technology	3	3	0	0	3
A15	CHT101	Engineering Chemistry	Chemistry	3	3	0	0	3
A16	CVT101	Engineering Drawing	Civil	3	1	0	4	5
A17	CHL101	Chemistry Laboratory	Chemistry	1	0	0	2	2
A18	ITL101	Computer Programming Laboratory	Information Technology	1	0	0	2	2
A19	NBA101	Fundamental Knowledge of Accreditation**	NBA Instt. Cell	0	2	0	0	2
		Total		20	18	0	08	26

****** Compulsory Audit Course

1st Semester (Group B)

Electrical/ Electronics & Comm. /Computer Science / Information Technology

S. No	Course	Course Title	Department	Credit		Contact Hours		
	Code		Offering		L	Т	Р	Total
B11	HST101	Basic English and Communication Skills	Humanities	3	2	1	0	3
B12	MAT101	Mathematics I	Mathematics	3	2	1	0	3
B13	MET101	Elements of Mechanical Engineering	Mechanical	3	2	1	0	3
B14	PHT101	Engineering Physics	Physics	3	2	1	0	3
B15	CHT102	Environmental Studies	Chemistry	3	2	1	0	3
B16	CVT102	Engineering Mechanics	Civil	3	2	1	0	3
B17	HSL101	English Language Laboratory	Humanities	1	0	0	2	2
B18	PHL101	Engineering & Applied Physics Laboratory	Physics	1	0	0	2	2
B19	WSL101	Workshop Practice	Workshop	2	0	0	4	4
		Total		22	12	6	8	26

National Institute of Technology Srinagar <u>2ndSemester (Group A)</u> <u>Civil/ Mechanical/ Chemical/ Mett. & Mat Science</u>

S. No	Course	urse Course Title	Department	Credit Contact Hours			Hours	
	Code		Offering	5		Т	Р	Total
A21	HST102	Advanced English and Comm. Skills	Humanities	3	2	1	0	3
A22	MAT102	Mathematics II	Mathematics	3	2	1	0	3
A23	MET101	Elements of Mechanical Engineering	Mechanical	3	2	1	0	3
A24	PHT101	Engineering Physics	Physics	3	2	1	0	3
A25	CHT102	Environmental Studies	Chemistry	3	2	1	0	3
A26	CVT102	Engineering Mechanics	Civil	3	2	1	0	3
A27	HSL101	English Language Laboratory	Humanities	1	0	0	2	2
A28	PHL101	Engineering & Applied Physics Laboratory	Physics	1	0	0	2	2
A29	WSL101	Workshop Practice	Workshop	2	0	0	4	4
		Total		22	12	6	8	26

2ndSemester (Group B)

Electrical/ Electronics & Comm. /Computer Science / Information Technology

S. No	Course	Course Title	Department	Credit	Contact Hours			
	Code		Offering		L	Т	Р	Total
B21	HST102	Advanced English and Comm. Skills	Humanities	3	3	0	0	3
B22	MAT102	Mathematics II	Mathematics	3	3	0	0	3
B23	EET101	Basic Electrical Engineering	Electrical	3	3	0	0	3
B24	ITT101	Computer Programming	Information Technology	3	3	0	0	3
B25	CHT101	Engineering Chemistry	Chemistry	3	3	0	0	3
B26	CVT101	Engineering Drawing	Civil	3	1	0	4	5
B27	CHL101	Chemistry Laboratory	Chemistry	1	0	0	2	2
B28	ITL101	Computer Programming Laboratory	Information Technology	1	0	0	2	2
B29	NBA101	Fundamental Knowledge of Accreditation**	NBA Instt. Cell	0	2	0	0	2
		Total		20	18	0	08	26

****** Compulsory Audit Course

Year (Semester)	Course Title	Course Code	L-T-P-Credits
1 st Year (1 st Semester)	Basic English and Communication Skills	HST 101	3-0-0-3
Evaluation Policy	Mid-Term	Internal Assessment	End-Term
	26 Marks	24 Marks	50 Marks

Course Outcomes: At the end of the course, the student will be able to:

C01	Exhibit correct use of basic English phonetics.	Bloom's Taxonomy Level 3
CO2	Employ the vocabulary and grammar components properly in English communication.	Bloom's Taxonomy Level 3
CO3	Demonstrate effective reading and comprehension skills.	Bloom's Taxonomy Level 5
C04	Compose paragraphs and essays using the formal writing strategies.	Bloom's Taxonomy Level 6

Detailed Syllabus:

Module No.	Contents	Hours
Module 1	English Phonetics Sounds/Phonemes of English (Vowels and Consonants) Phonemic Transcription of Simple Words Syllable Structure Word Stress	(10 Hours)
Module 2	Vocabulary and Grammar Word Formation (Prefixes and Suffixes) [Textbook Pages 4-8 and 57-62] Synonyms and Antonyms [Textbook Pages 33-35] Articles, Prepositions [Textbook Pages 8-15, 112-113, and 127-129] Punctuation [Textbook Pages 19-22]	(11 Hours)
Module 3	Reading Techniques for Good Comprehension [Textbook Pages 40-42] Skimming and Scanning [Textbook Pages 71-75] Local and Global Comprehension [Textbook Pages 92-95] Reading Prescribed Comprehension Passages [Textbook Pages 1-4, 29-33, and 40-42]	(10 Hours)
Module 4	Writing Phrases and Clauses[Textbook Pages16-19] Redundancies and Clichés [Textbook Pages 89-92 and 116] Paragraph Writing [Textbook Pages23-28and76-84] Essay Writing[Textbook Pages98-102]	(11 Hours)

- 1. N. P. Sudharshana and C. Savitha, English for Engineers, Cambridge, 2018.
- 2. dictionary.cambridge.org/help/phonetics.html [For Unit1, Sounds of English]
- 3. howjsay.com/ [ForUnit1, Transcription/Pronunciation]
- 4. myenglishlanguage.com/linguistics-language-guide/english-phonology/syllables-and- stress/ [For Unit 1, Syllable and Stress]

Year (Semester)	Course Title	Course Code	L-T-P-Credits
1 st Year (1 st & 2 nd Semester)	Mathematics-I	MAT-101	3-0-0-3
Evaluation Policy	Mid-Term	Internal Assessment	End-Term
	26 Marks	24 Marks	50 Marks

Pre-requisites: A student should have basic knowledge of differential calculus and matrices.

Course Outcomes: At the end of the course, the student will be able to:

C01	Solve linear and nonlinear differential equations by various methods
CO2	Apply ordinary differential equations for solving various problems.
CO3	Solve the problems related to rank of matrix, Cayley-Hamilton theorem, solutions of equations by matrix method.
C04	Estimate eigen values, eigen vectors and quadratic forms.

Detailed Syllabus:

Module No.	Contents	Hours
Module 1	Exact differential equations, Necessary and sufficient condition for exact differential equations, Equations reducible to exact form, Linear differential equations of second and higher order with constant and variable coefficients, Cauchy's Homogeneous Linear equation, Legendre's linear equation, Simultaneous differential equations of first and second order, Simultaneous differential equations of the form $\frac{dx}{p} = \frac{dy}{Q} = \frac{dz}{R}$,Nonlinear differential equation.	12
Module 2	Method of Variation of parameters, Method of undetermined coefficients, Series solution of ordinary differential equations (Frobenius method). Applications of ordinary differential equations viz. law of growth and decay, Newton's law of cooling, Electric circuits, Chemical reaction and solutions.	12
Module 3	Rank of a matrix, Equivalent matrices, Elementary transformations, normal form, Inverse of a matrix, Cayley- Hamilton theorem, Applications of Cayley-Hamilton theorem for finding Inverse and higher powers of a matrix, Solution of simultaneous equations by elementary operations, Similar matrices.	10
Module 4	Special matrices viz. orthogonal matrix, Idempotent matrix, unitary matrix. Eigen values and Eigen vectors of a matrix, Properties of eigenvalues and eigenvectors. Quadratic forms, Value class of quadratic form	8

- Jain, R.K and Iyengar, S.R.K.(2008) *Advanced Engineering Mathematics*, Third Edition, Narosa Pub. House.
- 2. Kreyszig, E. (2006). Advanced Engineering Mathematics, 9th Edition, John Wiley Sons.
- 3. Piaggio, H.T.H. Differential Equations, CBS publishers.

Year (Semester)	Course Title	Course Code	L-T-P-Credits
1 st Year (1st & 2 nd Semester)	Basic Electrical	EET101	3-0-0-3

	Engineering		
Evaluation Policy	Mid-Term	InternalAssessment	End-Term
	26 Marks	24 Marks	50 Marks

Course Outcomes: At the end of the course, the student will be able to:

C01	Demonstrate a comprehensive understanding of DC circuits and their elements through application of
	KVL/KCL and various network theorems.
CO2	Analyse and evaluate AC circuits, calculate Power in AC Circuits, and have a basic understanding of
02	three phase circuits.
CO3	Comprehend the working principle and characteristics of transformers& evaluate performance indices
	of transformers.
CO4	Gain insight into the working principles of various DC & AC machines and gain working knowledge of
	basic measurement instruments.

Detailed Syllabus:

Module No.	Contents	Hours
	DC Circuits:Introduction to Electric Circuits and their Elements, Energy Sources &	
	their types (Ideal/Practical & Dependent/Independent Sources), Kirchhoff's	
Module 1	Voltage & Current laws, Nodal Analysis, Mesh Analysis, Thevenin's theorem,	10
	Norton's theorem, Superposition theorem, Maximum Power Transfer theorem,	
	Star-Delta Transformation.	
	AC Circuits: Introduction to AC circuits and Sinusoidal Signals, Phasor	
Module 2	representation,Concept of Impedance.Instantaneous, Active, and Reactive Power,	8
	Concept of Power factor. Introduction to Three Phase circuits.	
	Transformers: Introduction to Transformers and their working principle, Ideal&	
Module 3	PracticalTransformers, Equivalent circuit, and Phasor diagram. Losses &	8
	Efficiency.	
	Machines:Introduction to Electric Machines.	
	DC Machines: Construction, Principle of Operation, EMF and Torque Equations,	
Module 4	Characteristics of DC Generators and Motors.	10
	Induction Motors: Production of Rotating Magnetic Field, Principle of Operation of	
	3-φ I.M., Torque-Speed Characteristics of 3-φ I.M.	
Module 5	Measuring Instruments: Basic Terminology associated with Measurement.	6
module 5	Measurement of Current, Voltage, Resistance & Power. Sensors & Transducers.	6
	Total	42

- 1. Vincent Del Toro, Electrical Engineering Fundamentals, 2nd Edition, PHI, 2003.
- 2. Edward Hughes, Electrical Technology, 10th Edition, ELBS, 2010.
- 3. V.N. Mittle, Basic Electrical Engineering, TMH, 2000.

Year (Semester)	Course Title	Course Code	L-T-P-Credits
1 st Year (1st & 2 nd Semester)	Computer Programming	ITT101	3-0-0-3

Evaluation Policy	Mid-Term	Internal Assessment	End-Term
	26 Marks	24 Marks	50 Marks

Course Outcomes: At the end of the course, the student will be able to:

C01	Apply programming for problem-solving and use various library functions, data types, characters, keywords and operators of the 'C' language
C02	Analyze and apply the concept of conditional and iterative statements in C language and use of functions.
CO3	Evaluate the data types offered by the C language including complex data types: arrays, structures, pointers, and unions.
C04	Analyze the dynamic behavior of memory and implement the file handling concept in C programming.

Detailed Syllabus:

Module No.	Contents	Hours
Module 1	 Introduction to Problem-Solving: Engineering problem-solving methodology, Flowcharts and Algorithms, Need for computer Languages, High-level languages, History of C, Memory Layout of a C Program, GCC compiler Language of Bits: Binary Representation of Data, 1's and 2's complement representation, Computer Arithmetic, Octal and HexaDecimal Representation. Fundamentals of C: Program structure, C character set, Library functions, Preprocessors Directives, Compilation Flow of a C program, I/O functions in C, Comments, Header Files, C character set, data types, identifiers and keywords, Declarations, Operators and expressions, Type Conversion, Precedence and Associativity. 	8
Module 2	 Decision Control Structure in C: Decision-making statements(if, if-else, if-else-if, switch), nesting of decision control structures. Loop Control Structure in C: Looping Statements(while, do-while, for), nested loop, use of jumping statements(break, continue, goto). Functions: Concept of library functions, user-defined functions, passing arguments, Function prototypes, Calling a function, Static functions, Recursion. 	13
Module 3	 Arrays and String: Declaration and initialization, Passing arrays to a function, matrices as 2D arrays, Multi-dimensional arrays, string handling library functions. Pointers: Declarations, Passing pointers to a function, Operations on pointers, Pointer Arithmetic, Pointers and arrays, Arrays of pointers, and function pointers. Structures and Unions: Defining and accessing structure, structure as function arguments, an array of structures, pointers to structures, defining and accessing union. 	13
Module 4	Dynamic Memory Allocation: Introduction to dynamic memory allocation(malloc, calloc, realloc, free). File Handling: File operation such as storing, retrieving and updating a file.	8

- 1. Schaums Outline of Theory and Problems of programming with C: Gottfried
- 2. Programming with C, Byron Gottfried, Third Edition. (McGrawHill).
- 3. Mastering C by Venugopal, Prasad TMH
- 4. Programming in ANSI C, Balaguruswamy
- 5. C How to Program, P. J. Deitel and H. Deitel

Other Books Recommended:

- 1. Complete reference with C Tata McGraw Hill
- 2. Engineering Problem Solving with ANSI C, Delores M. Etter, Prentice Hall
- 3. C Programming, Ivor Horton, Wrox Press Limited
- 4. The C programming language: Kerninghan and Ritchie

Year (Semester)	Course Title	Course Code	L-T-P-Credits
1 st Year (1 st and 2 nd Semester)	Engineering Chemistry	CHT-101	3-0-0-3
Evaluation Doligy	Mid-Term	Internal Assessment	End-Term
Evaluation Policy	26 Marks	24 Marks	50 Marks

Course Outcomes: At the end of the course, the student will be able to:

C01	Analyze the properties and use of polymeric and nanomaterials.
CO2	Learn the basic concepts of water treatment.
CO3	Gain knowledge about fuels and their applications.
CO4	Develop insight into the fundamentals of lubricants and corrosion.

Detailed Syllabus:

Module No.	Contents	Hours
Module 1	 Engineering materials Polymers: Introduction, classification, types of polymerization, mechanisms of polymerization (free radical, cationic, anionic), coordination polymerization and its mechanism, synthesis and applications of some important engineering polymers (Polyethylene, PVC, Teflon, Terylene, Nylon-6, Nylon-6,6), Conducting polymers; classifications, properties and applications in engineering field. Nanomaterials: Introduction, Classification of nanomaterials based on their size, Approaches for nanomaterials synthesis (Bottom-up approach: Sol-gel synthesis, Hydrothermal growth and chemical vapor deposition. Top-down approach: Ball Milling and Micro-fabrication), Applications of nanotechnology in various fields. 	12
Module 2	Water treatment Introduction, Impurities in water, Hard water, Determination of hardness and alkalinity, Softening of hard water (Lime-Soda process, Zeolite process and Ion Exchange process), municipal treatment of water for drinking purposes; removal of suspended, dissolved and biological impurities-Sterilization by chlorination (Effective and break-point chlorination). Numerical problems based on hardness, alkalinity and LS process.	10
Module 3	Fuels Introduction, Classification, Calorific value (HCV and LCV), Determination of calorific value using Bomb calorimeter, Numerical problems based on Dulong's formula. Biofuels: Classification of biofuels; first, second, third and fourth generation biofuels. Properties and characteristics of liquid biofuels (bioethanol, biobutanol and biodiesel).	10
Module 4	 Lubricants and Corrosion Lubricants: Introduction, mechanisms of lubrication, hydrodynamic, boundary and extreme pressure lubrication, classification of lubricants: liquid, semi solid and solid lubricants. Lubricating oils; fatty oils, mineral oils, blended oils, synthetic oils, properties of lubricating oils with special reference to flash point, aniline point, viscosity and viscosity index. Corrosion: Introduction, types of corrosion: Dry and wet corrosion (pitting corrosion, crevice corrosion, and stress corrosion), corrosion prevention and control by proper design and material selection, cathodic protection, anodic protection, protective coatings. 	10

- 1. Jain P.C., Jain M., Engineering Chemistry, Dhanpat Rai Publishing Company, 17th Edition, 2019.
- 2. Dara S.S., Umare S.S., A Text Book of Engineering Chemistry, S. Chand Publication, 1st Edition, 2004.

- 3. Viaram S., Engineering Chemistry, Wiley Publication, 1st Edition, 2017.
- 4. Rao M.S.R., Singh S., Nanoscience and Nanotechnology: Fundamentals to Frontiers, Wiley Publication, 1st edition, 2014.
- 5. Roussak O.V., Gesser H.D., Applied Chemistry: For Engineers and Technologist, 2nd Edition, 2013.
- 6. Gowariker V.R., Viswanathan N.V., Sreedhar J., Polymer Science, New Age International Publisher, 3rd Edition, 2019.
- 7. Agarwal C.V., Murthy C.P., Naidu A., Chemistry of Engineering Materials, B.S. Publication, 9th Edition, 2018.
- 8. Cademartiri L., Ozin G. A., Lehn J. M., Concepts of Nanochemistry, Wiley-VCH Publication, 1stEdition, 2009.

Year (Semester)	Course Title	Course Code	L-T-P-Credits
1 st Year (1 st and 2 nd Semester)	Engineering Drawing	CVT-101	1-0-4-3
Evoluction Doligy	Mid-Term	Internal Assessment	End-Term
Evaluation Policy	26 Marks	24 Marks	50 Marks

Course Objective:

To inculcate the ability to translate geometric and topological information of common engineering objects (two/three dimensional) into engineering drawing using standard graphical techniques.

Course Outcomes:

CO	Course Outcomes	BTL
NOs		
C01	Apply the concepts of projection of points, lines and solids to develop real	3
	world objects	
CO2	Analyze different sectional views of simple geometrical solids	4
CO3	Perceive the intersection and development of surfaces of simple solids	5
CO4	Imagine and construct orthographic, Isometric, and Perspective views of objects.	6

<u>Syllabus</u>

Unit	Course Contents	Contact Hours
Unit 1	Introduction to Engineering Drawing: Basic principles of Engineering Drawing, Stationary requirements, drawing instruments, lettering, dimensioning, layout	20
	Scales: Representation of scales, units of measurement, representative fraction, types of scales	20
	Types of projections: Concept of first angle and third angle projections, concepts of projection of points, lines, and planes	
Unit 2	Introduction to 3D objects: Construction of different views of simple geometrical solids using first angle projection	
	Sections: Types of sectional planes, true shapes of sections	
Unit 3	3 Intersection of surfaces: simple case of intersection of two prisms, two cylinders, and cone and a cylinder.	
	Development of surfaces: Development of surfaces ofsections of solids and simple intersecting solids.	
Unit 4	Isometric views: Development isometric views of simple blocks using orthographic third angle projections	15

Text book:

1. Bhatt N.D. and Panchal V.M., "Engineering Drawing", Charotar Publishing House, 50th Edition, 2010.

References:

- 1. Gopalakrishna K. R., "Engineering Drawing" (Vol. I&II combined), Subhas Stores, Bangalore, 2007.
- 2. Shah M. B., and Rana B. C., "Engineering Drawing", Pearson, 2nd Edition, 2009.
- Luzzader, Warren. J. and Duff, J. M., "Fundamentals of Engineering Drawing with an Introduction to Interactive Computer Graphics for Design and Production, Eastern Economy Edition, Prentice Hall of India Pvt. Ltd, New Delhi, 2005.
- 4. Venugopal K. and Prabhu R. V., "Engineering Graphics", New Age International (P) Limited, 2008.
- 5. Natrajan K.V., "A text book of Engineering Graphics", Dhanalakshmi Publishers, Chennai, 2009.
- 6. Basant A. and Agarwal C. M., "Engineering Drawing", Tata McGraw Hill Publishing Company Limited, New Delhi, 2008.
- 7. Gowri S., and Jeyapoovan T., "Engineering Graphics" Vikas Publishing House (P) Limited, 2011.

Year (Semester)	Course Title	Course Code	L-T-P-Credits
1 st Year (1 st and 2 nd Semester)	Chemistry Laboratory	CHL 101	0-0-2-1
Evaluation Doligy	Continuous	Assessment	End-Term
Evaluation Policy	60 Marks		40 Marks

Course Outcomes: At the end of the course, the student will be able to:

C01	Acquire practical knowledge of determination of various parameters of water
CO2	Experimentally learn about synthesis of polymeric materials.
CO3	Gain the knowledge about analysis of fuels and lubricants.
CO4	Use instrumental methods for chemical analysis.

Detailed Syllabus:

Module No.	Contents	Hours	
Module 1	 To determine the total, permanent and temporary hardness of water by EDTA method. To determine alkalinity of given water samples/alkali mixtures by warder's Method. To estimate percentage of available chlorine (free chlorine) in bleaching powder/water. 		
Module 2	 Synthesis of Urea formaldehyde resin. Synthesis of Phenol formaldehyde resin. (Demonstration) 		
Module 3	 Proximate analysis of coal. To determine the acid value of given lubricating oil. To determine the aniline point of given lubricating oil. Estimation of viscosity of lubricating oil by viscometer. 		
Module 41. Estimation of strength of HCl by pH Meter. (Demonstration)2. To verify Beer-Lambert law for coloured solution and to determine the concentration of a given unknown solution. (Demonstration).			

- 9. Dara S.S., A Textbook on Experiments and Calculations in Engineering Chemistry, S Chand & Company Publication, 9th Edition, 2015
- 10. Mangla B., Sachdeva R., Sethi B., Engineering Practical Chemistry, Manakin Press, 1st Edition, 2018.
- 11. Rattan S., Theory and Practicals of Engineering Chemistry, S.K. Kataria and Sons publication, 1st Edition 2013.
- 12. Jaspal D., Malviya A., Engineering Chemistry Practical Book, Alpha science International Ltd., 1st Edition, 2015.
- 13. Thakur A., Practical Engineering Chemistry, Narosa Publication, 1st Edition, 2018.

Year (Semester)	Course Title	Course Code	L-T-P-Credits
1 st Year (Ist and 2 nd Semester)	Computer Programming Lab	ITL101	0-0-2-1
Evaluation Policy	Mid-Term	Internal Assessment	End-Term
100 Marks			

Course Outcomes: At the end of the course, the student will be able to:

C01	Apply programming for problem-solving and use various basic components of C program.
CO2	Illustrate the use of functions and various decision and loop control structures.
CO3	Explore diverse use cases of arrays and strings.
C04	Evaluate various data structures like structures and unions and implement dynamic memory
001	allocation and file handling.

Lab Details:

1. Introduction

- a. Understanding compilation flow using gcc.
- b. Programs to understand how integers, characters, and strings are stored and represented in C.
- c. Programs to understand the ASCII character encoding.

2. Operators and expressions

- a. Programs to understand how to use different operators available in C.
- b. Programs to understand differences between logical and arithmetic operators.
- c. Programs to understand differences between logical and bitwise operators.
- d. Programs to evaluate algebraic expressions in C.

3. Number System

a. Programs to obtain a full understanding of signed, unsigned, long and short numbers in

C.

b. Programs to understand exactly how numbers are represented in computers (octal,

hexadecimal and binary numbers systems).

4. Input and output Functions

- a. Programs to understand taking input from user using different input functions.
- b. Programs to understand printing of various data types using different output functions.
- c. Programs to exercise all flags in printf() and scanf() functions.
- d. Programs to understand printing of display patterns of numbers and asterisks.

5. Decision Control Structures

- a. Programs to understand the use of conditional statements like if-else.
- b. Programs to understand the use of nested control structures.
- c. Programs for implementing the Switch statements and its use cases.

6. Loop Control Structures

- a. Implementation of loops using C programs.
- b. Programs for solving some mathematical problems using loops.
- c. Programs for designing the patterns using loops.

7. Functions

a. Programs to understand modularize of code using functions.

- b. Programs to implement function with/without arguments and with/without return types.
- c. Programs to understand static data types and static functions.

8. Recursion

- a. Programs to understand direct and indirect recursions using functions.
- b. Programs to generate mathematical series using recursion.

9. Arrays and strings

a. Programs to understand how arrays work in C, how to use them, and how they are

stored in

memory.

- b. Programs to understand searching in an array.
- c. Programs to understand sorting techniques using arrays.

10.Pointers

- a. Programs to understand pointers in C.
- b. Programs to understand the relationship between array indexing and pointer arithmetic.
- c. Programs to use pointer to pass the address of data.

11.Pointer usage in arrays

- a. Programs to understand the relation between the name of the array and pointers.
- b. Programs to analyze the effect of arithmetic operations on the name of the array.

12.Structures and Unions

- a. Programs to understand creating, accessing and using structures.
- b. Programs to understand use of arrays of structures.
- c. Programs to understand pointers to structures and pointers as structures members.
- d. Programs to understand creating, accessing and using unions.

13.Dynamic memory allocation

- a. Programs to understand dynamic memory allocation especially with respect to1D and
 - 2D arrays.
- b. Programs to analyze the effect of dynamic memory allocation on memory management.

14. File Handling

- a. Programs to understand creating, reading, writing a file.
- b. Programs to understand taking input through arguments to the main() function.

Year (Semester)	Course Title	Course Code	L-T-P-Credits
1stYear (1st & 2ndSemester)	Fundamental Knowledge of Accreditation	NBA101	2-0-0-0
Evaluation Policy	Mid-Term	Internal Assessment	End-Term
	26 Marks	24 Marks	50 Marks

Course Outcomes: At the end of the course, the student will be able to:

C01	To identify the need of the outcome-based course and Accreditation.
CO2	To interpret the graduate attribute, program outcomes and Bloom Taxonomy levels.
CO3	To develop appropriate test items for all outcome based objectives for both summative and formative evaluation.
C04	To plan an outcome-based curriculum document to meet NBA and Washington Accord requirements.

Detailed Syllabus:

Module No.	Contents	Hours
Module 1	Introduction to Outcome based Learning (OBL) & Outcome based Education (OBE) and its importance. Vision and Mission statements of the institute, Vision and Mission of the department,	6
Module 2	Program educational objectives (PEOs), Program outcomes(POs), Program specificoutcomes(PSOs),Graduateattributesandintroductionofaccreditation.(Washington Accord, NBA etc.).	6
Module 3	Course Outcomes (COs), Bloom Taxonomy, Taxonomies levels, and Instructional Objectives. Assessment and Evaluation as per OBE, ICT for Assessment and Evaluation, Outcome-based Curriculum Design framework, Outcome-based Curriculum Design.	8
Module 4	Mapping of outcome-based curriculum with Program outcomes (POs), Program specific outcomes (PSOs), Outcome-based, learning style and learning approaches and life long learning.	6
Module 5	CO attainments, PO/PSO attainments. Benefits of accreditation to the students and the Institute.	4

- 1. NBA user manuals.
- 2. <u>https://www.nbaind.org/Downloads/Documents</u> <u>https://onlinecourses.nptel.ac.in/noc23_ge46/preview</u>

Year (Semester)	Course Title	Course Code	L-T-P-Credits
1 st Year (1st & 2 nd Semester)	Elements of Mechanical Engineering	MET101	2-1-0-3
Evaluation Policy	Mid-Term	Internal Assessment	End-Term
	26 Marks	24 Marks	50 Marks

Course Outcomes: At the end of the course, the student will be able to:

C01	Identify materials and manufacturing processes for industrial applications.
CO2	Evaluate the performance of energy conversion and conservation systems.
CO3	Apply the concepts of fluid engineering in practical and diverse fields.
C04	Demonstrate the ability to select the proper train drive for particular applications.

Detailed Syllabus:

Module No.	Contents	Hours
Module 1	Units and measurements. Engineering Materials and Materials Response. Basics of manufacturing processes. Recent advances in mechanical engineering, Role of Computer-Aided Design, Simulation and 3D printing.	10
Module 2	System and Surroundings, Thermodynamic processes, First and Second law of thermodynamics, Concept of Entropy. Engine Cycles and Efficiency. Basic idea of internal combustion engines. Heat transfer through conduction, convection and radiation. Heat exchangers. Energy conservation and conversion.	12
Module 3	General properties of fluids, Fluid statics, Pressure measurement. Equation of fluid motion, Bernoulli's Equation. Viscous Effects: Viscosity, Laminar and Turbulent Flows. Introduction to hydraulic machines: turbines, pumps, their types and applications in energy conversion.	12
Module 4	Gears, Types, Design Criteria, Speed, torque and power in gear sets. Simple, compound and reverted gear trains, gear ratios, applications.	8

Books Recommended:

- 1. P.N. Rao. (2013). *Manufacturing technology: metal cutting and machine tools* (Vol. 2). Tata McGraw-Hill Education.
- 2. H S Shan(2017). Manufacturing processes, 2nd Edition. Tata McGraw-Hill Education.
- 3. P. K. Nag, K. Tripathi, C. B. Pawara. Basic Mechanical Engineering.
- 4. Rattan, S. S. (2014). Theory of machines. Tata McGraw-Hill Education.

Reference Books:

- 1. Cengel, Yunus, John Cimbala, and Robert Turner. *Fundamentals of Thermal-Fluid Sciences (SI units)*. McGraw Hill, 2012.
- 2. Shigley, Joseph. Theory of Machine and Mechanisms, McGraw Hill 2014.

Year (Semester)	Course Title	Course Code	L-T-P - Credits
1 st Year (1st & 2 nd Semester)	Engineering Physics	PHT-101	2-1-0-3
Evaluation Policy	Mid-Term	Internal Assessment	End-Term
	26 Marks	24 Marks	50 Marks

Course Outcomes: At the end of the course, the student will be able to:

CO1	Apply the law of Electromagnetic waves in different engineering fields.	
CO2	Analyze the concept of relativity to explore various natural phenomena.	
CO3	Evaluate the concepts of quantum mechanics to understand the underlying mechanism of engineering problems	
	at microscopic level.	
CO4	Develop the alternative source of energy for future.	

Detailed Syllabus:

Module No.	Contents	Hours		
Module 1	 Introduction to Electromagnetism: Concept of Electromagnetism, Nebla operator and its operations, Maxwell equations, electromagnetic wave in different media and its solution in one dimension, Characteristic of Electromagnetic waves and spectrum, Electrostatic Energy density and Magnetostatic Energy density, Poynting Vector, Poynting Theorem and Conservation of momentum of Electromagnetic wave, and Numerical problems 			
Module 2	Special Theory of Relativity: Inertial Frames of Reference, Galilean Transformations, Postulates of Relativity, Lorentz Transformations, Time Dilation, Doppler Effect in light and			
Module 3	Quantum Mechanics: Transition from Classical to Quantum mechanics: Black Bod Radiation, Photoelectric effect, Compton effect. Concept of wave packets, de-Broglie Wave Heisenberg Uncertainty principle and its applications, Linearity and Superposition of the wave			
Module 4	Nuclear Physics: Fundamental Interaction, Meson Theory of Nuclear Forces, Nuclear Composition and Properties, Stable Nuclei, Binding Energy, Liquid-Drop Model, Nuclear Fission and Fusion, Radioactive Decay, Half Life, Alpha Decay (Qualitative analysis), Beta Decay (Fermi Theory) and Gamma Decay, Nuclear Hazards, Nuclear Reactors, Fusion Reactors: Future energy source.	10		

- 1. Griffith D. J., (1999) Introduction to Electrodynamics, USA: Prentice-Hall.
- 2. Resnick R. (2007) Introduction to Special Relativity, Singapore: John Wiley & Sons
- 3. Beiser A., Mahajan S., Choudhury S. R. (2009) *Concepts of Modern Physics, (6Th Edition),* India: McGraw Hill Education

Year (Semester)	Course Title	Course Code	L-T-P-Credits
1 st Year (1 st and 2 nd Semester)	Environmental Studies	CHT-102	2-1-0-3
Evaluation Dolian	Mid-Term	Internal Assessment	End-Term
Evaluation Policy	26 Marks	24 Marks	50 Marks

Course Outcomes: At the end of the course, the student will be able to:

C01	Learn the role of environmentand natural resources towards sustainability.	
CO2	Illustrate an eco-system with the help of biogeochemical cycles.	
CO3	Classify the environmental pollutions and their control measures.	
CO4	Discuss the various social aspects related to the environment by field assignment.	

Detailed Syllabus:

Module No.	Contents	Hours	
Module 1	Environment and Natural Resources Introduction, scope and importance of environmental studies, Types of natural resources, Natural resources and associate problems (1) Forest resources: deforestation, dams and their effects on forests and tribal people, (2) Water resources: surface and ground water, floods, drought, conflicts over water, benefits and problems associated with dams, (3) Mineral resources: classification and environmental effects of extracting the mineral resources, (4) Food resources: world food problems, effects of modern agriculture, problems with the use of fertilizers-pesticides and (5) Energy resources: growing energy needs, renewable and non- renewable energy sources and their applications.	11	
Module 2	cycle, oxygen cycle, phosphorous cycle, sulphur cycle), Ecological succession, Introduction, types, characteristic features, structure and function of forest and freshwater ecosystems (lake/river).		
Module 3	Environmental Pollution Definition of pollution; pollutants; classification of pollutants; solubility o pollutants (hydrophilic and lipophilic pollutants),Definition, Causes, Effects and Control measures of (1) Air pollution (global warming, acid rain, ozone lave		
Module 4	Social issues and the Environment, Field Assignment From unsustainable to sustainable development, urban problems related to energy, water conservation, rain water harvesting, watershedmanagement, Environmental ethics: issues and possiblesolutions, climate change, global warming, acid rain, ozone layer depletion, nuclear accidents and holocaust. Environment protectionAct, Air (prevention and control of pollution)Act, Water (prevention and control of pollution)Act, Wildlife protectionAct, Forest conservationAct. Field Assignment: Assignment on local environment problems.	10	

Books Recommended:

1. Bharucha E., Textbook of Environmental Studies for Undergraduate Courses, Universities Press, 2nd edition, 2019.

- 2. Mishra D.D., Fundamental Concepts in Environmental Studies, S. Chand & Company Pvt. Ltd, 4th edition,2014.
- 3. Rajgopalan R., Environmental Studies: From Crisis to Cure, Oxford University Press, 3rd edition, 2015.
- 4. Kaushik A., Kaushik C. P., Perspectives in Environmental Studies, New Age International Pvt. Ltd., 7th edition, 2021.
- 5. Joseph B., Environmental Studies, McGraw Hill Education, 3rd edition, 2017.
- 6. Chiras D.D., Environmental Science, Jones and Bartlett Publishers,10th edition, 2014.
- 7. Nazaroff W.W., Alvarez-CohenL., Environmental Engineering Science, Wiley India Pvt. Ltd., 1St edition, 2009.
- 8. Gregory K.J., Environmental Sciences: A Student's Companion, SLE Pound Publication, 1st edition, 2008.

Year (Semester)	Course Title	Course Code	L-T-P-Credits
1 st Year (1 st and 2 nd Semester)	Engineering Mechanics	CVT-102	2-1-0-3
Evolution Doligy	Mid-Term	Internal Assessment	End-Term
Evaluation Policy	26 Marks	24 Marks	50 Marks

Course Objective:

Develop an understanding of the fundamental concepts, theories, and principles of Engineering Mechanics for their applications in Solving Engineering Problems.

Course Outcomes:

CO's	Outcomes	BLL
CO1	Utilize the fundamentals of Static Equilibrium and Stress-Strain Concepts to Solve Engineering Problems.	III
CO2	Analyze the Properties of Plane Surfaces and the Concept of Friction in Mechanical Problems.	IV
CO3	Determination of Forces in Plane Trusses and Explain the Principle of Virtual Displacement.	V

CO4 Apply the Concept of Dynamics of Rigid Bodies and Energy Principles to Solve III Engineering Problems.

Unit	Contents	Contact Hours
01.	Introduction to Engineering Mechanics-	
	Statics:Fundamentalconceptsandlawsofmechanics.Equilibriumofbodies:Free- bodydiagrams,Statical determinacy. Force systems: Principle of Moments, Resultant of forces, Couple systems, Equilibrium of Rigid Bodies, Support reactions. Torque due to a force.	
	Concept of Stress and Strain: Compatibility and Stress-Strain Relations. Stress-Strain diagrams, Hooke's law, Modulus of elasticity (E), Lateral strains, Poisson's ratio, Multi-axial stress system, Volumetric strain, Bulk modulus (K), Shear stress concept, Modulus of rigidity (G). Relation between E, G, and K.	
02.	Properties of plane surfaces: Centroid and Center of Gravity, First moment of area, Second Moment of Area.	10
	Friction: General concept of Friction. Static and Dynamic Friction.	
03.	Plane Trusses: Forces in members of a Truss by Method of Joints and Method of Sections.	10
	Virtual Work: Principle of Virtual Work, Calculation of Virtual Displacement and Virtual Work.	
04.	Dynamics of Rigid Bodies: Newton's Laws, D'Alembert's Principle, Energy Principles.	4

Textbook:

- 1. Hibbeler, R.C., "Mechanics of Materials", 6th SI edition, Prentice Hall.
- 2. Hibbeler, R.C., Engineering Mechanics: Statics and Dynamics, Prentice Hall(2012).
- 3. Singer, F. L., Engineering Mechanics Statics & Dynamics, Prentice Hall.

References:

- 1. Beer, P.F. and Johnston (Jr.) E.R. "Mechanics of Materials", S.I. Version, Tata McGraw Hill, India, 2001.
- 2. Beer,Johnston,ClausenandStaab,VectorMechanicsforEngineers,Dynamics,McGraw-Hill Higher Education (2003)
- 3. TimoshenkoandYoung,EngineeringMechanics,TataMcGrawHillEducationPrivateLimited (2000).
- 4. Shames, I.H. Engineering Mechanics: Dynamics, Pearson Education India(2002).
- 5. Popov, E.P., Engineering Mechanics of Solids, Prentice-Hall, 1999.
- 6. GereJ. M. and Good no, B. J., Strength of Materials, Cengage Learning.
- 7. Craig, R.R., "Mechanics of Materials", 2ndedition, John Wiley and Sons

Year (Semester)	Course Title	Course Code	L-T-P-Credits
1 st Year (1 st and 2 nd Semester)	English Language Lab	HSL101	0-0-2-1
Evaluation Policy	Mid-Term	Continuous Assessment	End-Term
		60 Marks	40 Marks

Pre-requisites: None. **Course Outcomes:** At the end of the course, the student will be able to:

C01	Demonstrate considerable vocabulary enhancement and correct usage of English grammar.	Bloom's Taxonomy Level 3
CO2	Exhibit effective listening and speaking skills.	Bloom's Taxonomy Level 4
CO3	Display impressive reading and writing skills.	Bloom's Taxonomy Level 5
C04	Present themselves proficiently in various professional settings verbally and non-verbally.	Bloom's Taxonomy Level 6

Detailed Syllabus:

Module/Week	Garatanta	
No.	Contents	Hour
	Vocabulary-I	
Week 1	Selected Laboratory Modules (with Practice Exercises)	2
	Complementary Material: English with Ronnie (cuq.in/GXUO)	
	Listening I	
Week 2	Selected Laboratory Modules (with Practice Exercises)	2
	Complementary Material: Listening Time (cuq.in/IDkX)	
	Speaking I	
Week 3	Selected Laboratory Modules (with Practice Exercises)	2
	Complementary Material: English Speaking Success (cuq.in/P1bN)	
	Reading I	
Week 4	Selected Laboratory Modules (with Practice Exercises)	2
	Complementary Material: Oxford Online English (cuq.in/adxO)	_
	Writing I	2
Week 5	Selected Laboratory Modules (with Practice Exercises)	2
	Complementary Material: Purdue OWL (owl.purdue.edu/)	
	Grammar I	
Week 6	Selected Laboratory Modules (with Practice Exercises)	2
	Complementary Material: English with James (cuq.in/UruK)	
	Interpersonal Skills I	
Week 7	Selected Laboratory Modules (with Practice Exercises)	2
	Complementary Material: Let Them Talk TV (cuq.in/6gvC)	
Week 8		
	Vocabulary II	
	Selected Laboratory Modules (with Practice Exercises)	2
	Complementary Material: English with Katherine (cuq.in/wJEO)	
	Listening II	
Week 9	-	2
WEEK 9	Selected Laboratory Modules (with Practice Exercises)	2
	Complementary Material: Aleena Rais Live (cuq.in/4Q72)	
	Speaking II	
Week 10	Selected Laboratory Modules (with Practice Exercises)	2
	Complementary Material: Speak English with Vanessa	
	(cuq.in/9Rrz)	
	Reading II	
Week 11	Selected Laboratory Modules (with Practice Exercises)	2
WEEK II	Complementary Material: Learn English with Cambridge	-
	(surl.li/ivyjd)	
	Writing II	
Wool 17	Selected Laboratory Modules (with Practice Exercises)	2
Week 12	Complementary Material: The Writing Center: University of North Carolina at	2
	Chapel Hill(writingcenter.unc.edu/)	

Week 13	Grammar II Selected Laboratory Modules (with Practice Exercises) Complementary Material: English with Jennifer (cuq.in/uncc)	2
Week 14	Interpersonal Skills II Selected Laboratory Modules (with Practice Exercises) Complementary Material: Advanced English—For Professionals (cuq.in/7wJ7)	2

Year (Semester)	Course Title	Course Code	L-T-P-Credits
1 st Year (1 st and 2 nd Semester)	Engineering & Applied Physics Laboratory	PHL-101	0-0 -2-1
Evaluation Policy	Continuous Assessment 60 Marks		End-Term
			40 Marks

Course Outcomes: At the end of the course, the student will be able to:

CO1	Experimental verification of interaction of radiation with matter.
CO2	Analyze the physical implications of Simple harmonic motion under the influence of gravity.
CO3	Evaluate the dynamics of electromagnetic fields.
CO4	Design the semiconductor based devices

Detailed Syllabus:

Module No.	Contents	Hours
Module 1	 To determine Planck's constant and work function using photoelectric effect. To verify inverse square law of radiation using photoelectric effect. Determination of absorption coefficient of a liquid or solution with the help of Photovoltaic cell. 	06
Module 2	 To determine value of acceleration due to gravity with Bar pendulum. To determine value of acceleration due to gravity with Kater's pendulum. To determine the young's modulus of the material of a given beam supported on two knife edges and loaded at the middle point. To verify Stoke's law and determine the coefficient of viscosity of a highly viscous liquid. 	08
Module 3	 To determine the wavelength of sodium light by newton's rings method. To find angle of prism, angle of minimum deviation and refractive index of prism. To study variation of magnetic field along the axis of circular coil carrying current. 	08
Module 4	 To determine the Hall coefficient for given semiconductor and study its field dependence. To plot the V-I Characteristics of the solar cell and hence determine the fill factor. To plot the V-I Characteristics of the P-N Junction Diode. To study the temperature dependence of resistivity of semiconductor and to determine band gap of experimental material (Ge). 	06

- 4. Arora C. L. (2016) *Practical Physics*, India: S Chand.
- 5. Gupta S. L., Kumar V. (2010) Practical PhysicsIndia: PragatiPrakashan.
- 6. Das R., Robinson C. S., Kumar R. and Sahu P. R.(2016) *A Textbook of Engineering PhysicsPractical*, India: University Science Press.

Year (Semester)	Course Title Course Code		L-T-P-Credits
1 st Year (1 st and 2 nd Semester)	Workshop Practice	WSL101	0-0 -4-2
Evaluation Policy	Continuous	Assessment	End-Term
2, uraudon i oney	Continuous	1 issessment	

Course Outcomes: At the end of the course, the student will be able to:

CO1	Identify and apply relevant tools and techniques in various Machining Operations.
CO2	Introduce various joints, tools, operations and techniques in Welding and Sheet- Metal Shop.
CO3	Recognize and apply basic principles and techniques of Forging and Foundry Shop.
CO4	Study and practice of basic operations using different types of tools and fixtures in Carpentry and Fitting Shop.

SYLLABUS

Machining Trade

(Machinist Trade & Turning Section)

Theoretical Instructions:

Safety Precautions, Introduction of machine tools such as lathe, drilling machine & other related metal cutting tools. Parts of lathe & basic metal cutting operations. Introduction of various types of cutting tools and their material.

Practical Demonstrations:

Demonstration on Lathe & basic operations such as drilling, facing, turning, taper turning, step turning, knurling, chamfering etc. Demonstration of basic measuring instruments.

Job No. 1: TO PERFORM PLAIN AND STEP TURNING ON A JOB ON CENTRE LATHE AS PER GIVEN DRAWING.

Job No. 2: TO PERFORM TAPER TURNING AND KNURLING ON JOB NO. 1 AS PER THE DRAWING. Job No. 3: TO PERFORM GROOVING OPERATION ON JOB NO. 2 AS PER THE DRAWING.

Sheet Metal & Spray-Painting Section

Theoretical Instructions:

Safety precautions, brief introduction of sheet metal, various tools, joints & operations. Soldering, brazing, & shearing, Fluxes & their applications. Introduction of different machines and pattern development in detail. Brief description of paints & varnishes.

Practical Demonstrations:

Demonstration of all basic hand tools & equipment's. Fabrication of simple joints and jobs. Preparation & painting of surfaces for varnish & painting etc.

Job No. 1: TO DEVELOP A CYLINDRICAL JOB. Job No. 2: TO DEVELOP A SQUARE ELBOW AS PER THE DRAWING. Job No. 3: TO DEVELOP A RECTANGULAR TRAY AS PERDRAWING.

Fitting & Benchwork Section

(8 Hrs.)

Theoretical Instructions:

(8 Hrs.)

(8 Hrs.)

Safety precautions, introduction to fitting & bench work. Demonstration of basic hand tools, holding devices and basic fitting operations such as measuring, marking, filing, sawing. drilling, tapping, buffing.

Practical Demonstrations:

Demonstration of all basic hand tools/ measuring tools & equipment's. Demonstration of simple operations such as marking, punching, filing, sawing, scrapping, drilling.

Job No. 1: TO FABRICATE A SQUARE PLATE OF MILD STEEL WORK PIECE 50X50X 5 mm. Job No. 2: TO FABRICATE A SNAP FITTING OF MILD STEEL WORK PIECE 50 X 50 X 5 mm. Job No. 1:TO FABRICATE A CROSS/SQUARE FITTING OF MILD STEEL WORK PIECE 50X50X 5 mm.

Welding Section

(8 Hrs.)

Theoretical Instructions:

Safety Precautions, Introduction of welding processes like electric arc welding, Gas Welding, MIG Welding, TIG welding, Submerged arc welding & spot welding. Various Fluxes & electrodes used in welding. Introduction of ac & dc welding and its applications.

Practical Demonstrations:

Demonstration of all basic tools & personal protective equipment's. Demonstration of different types of joints by using arc welding & gas welding etc.

Job No.1: TO PERFORM A ROUGH WELDING USING SHIELDED METAL ARC WELDING MACHINE (SMAW)

Job No.2: TO MAKE A SINGLE-V BUTT JOINT OF MILD STEEL 80x50x8mm Job No.3: TO MAKE A LAP JOINT OF MILD STEEL 85x35x6mm

Foundry and Casting Section

Theoretical Instructions:

Safety Precautions, Introduction to foundry and casting processes, basic steps in casting processes types of patterns, brief description of common hand tools used in foundry work,

Introduction of risers, runners, gates moulding sand and its composition and its properties. Name of the common Metals for Casting.

Practical Demonstrations:

Demonstration and practice for preparation of moulding sand, use of hand tools to prepare the mould by using different types of patterns

Job No. 1: TO PREPARE A GREEN SAND MOULD BY USING STEP PULLEY BLOCK FOR CASTING Job No. 2: TO PREPARE A GREEN SAND MOULD BY USING OPEN BEARING BLOCK FOR CASTING Job No. 3: TO PREPARE A GREEN SAND MOULD BY USING SELF CORED PATTERN FOR CASTING

Smithy & Forging Section

Theoretical Instructions:

Safety precautions, introduction of forging tools. Materials & their heat treatments. Description of all forging operations such as hand forging, upsetting, drawing & punching. Introduction of various forging methods. Comparison of hot & coldworking.

(8 Hrs.)

(8 Hrs)

Practical Demonstrations:

Demonstration & practice of different smithy operations like forging, cutting, punching, bending etc. Demonstration & practice of MS rod into forged MS ring & octagonal cross section.

Job No. 1: TO FORGE MS-SQUARE FROM MS-ROUND BAR BY USING DIFFERENT FORGING HAND TOOLS.

Job No. 2: TO FORGE A SQUARE HEADED BOLT FROM MS-ROUND (60x30mm). Job NO. 3: TO FORGE AN MS-OCTAGON FROM A SQUARE MS-BAR (80X80 mm).

Carpentry & Pattern Making Section

(8 Hrs)

Theoretical Instructions:

Safety Precautions, Introduction of carpentry & joinery, different tools used in carpentry. Seasoning of wood and defects of wood. Various types of joints. Brief description of wood working machines and patternmaking.

Practical Demonstrations:

Demonstration & practice of different carpentry operation like Planning, sawing & chiselling and joints. Demonstration of pattern making tools & materials.

Job No. 1: PLANNING, SAWING AND CHISELING OF A WOODEN PLANK AS PER DRAWING. Job No. 2: TO PREPARE HALF LAP CROSS JOINT OF SPECIFIED DIMENSIONS. Job No. 2: TO PREPARE A BRIDLE JOINT OF SPECIFIED DIMENSIONS.

List of recommended books: -

- 1) Workshop Technology by W. A. J. Chapman
- 2) Workshop Technology by Choudhury H S K
- 3) Workshop Practice by Swarn Singh
- 4) Workshop Technology by Virender narula

Year (Semester)	Course Title	Course Code	L-T-P-Credits
1 st Year (2 nd Semester)	Advanced English and Communication Skills	HST1012	2-1-0-3
Evaluation Policy	Mid-Term	Internal Assessment	End-Term
	26 Marks	24 Marks	50 Marks

Course Outcomes: At the end of the course, the student will be able to:

C01	Employ the vocabulary and grammatical elements correctly in English communication.	Bloom's Taxonomy Level 3	
C02	Analyze the selected texts using the critical reading strategies effectively.	Bloom's Taxonomy Level 4	
CO3	Compose persuasive technical writing for academic and professional purposes.	Bloom's Taxonomy Level 6	
C04	Exhibit impressive verbal and non-verbal interpersonal communication required for work place environment.	Bloom's Taxonomy Level 6	

Detailed Syllabus:

Module No.	Contents	Hours
Module 1	Vocabulary and Grammar Abbreviations and Acronyms [Textbook Pages 88-89] Words from Foreign Languages and Technical Fields [Textbook Pages 108-112 and 130-133] Noun-Pronoun Agreement, Subject-Verb Agreement [Textbook Pages 35-39 and 114- 115] Tenses, Misplaced Modifiers [Textbook Pages 62-71 and 113-115]	(10 Hours)
Module 2	Critical Reading Techniques of Effective Reading [Textbook Pages 15-16] Intensive and Extensive Reading [Textbook Pages 96-97] Practicing Reading Comprehension [Textbook Pages 52-57, 85-88, 106-108, and 116-119] Reading Non-Prescribed Passages/Texts	(11 Hours)
Module 3	Technical Writing Formal Letters [Textbook Pages 43-48] and Email Writing Job Application and Résumé Writing [Textbook Pages 48-51] Précis Writing [Textbook Pages 102-105] Report Writing [Textbook Pages 120-126]	(10 Hours)
Module 4	Interpersonal Skills Non-Verbal Communication Listening and Its Types Debate and Group Discussion Job Interviews	(11 Hours)

- 1. N. P. Sudharshana and C. Savitha, English for Engineers, Cambridge, 2018.
- 2. learnenglish.britishcouncil.org/business-english/english-emails[For Unit3, Email Writing]
- 3. www.skillsyouneed.com/ [ForUnit4]

Year (Semester)	Course Title	Course Code	L-T-P-Credits
1 st Year (1st & 2 nd Semester)	Mathematics-II	MAT-102	2-1-0-3
Evaluation Policy	Mid-Term	Internal Assessment	End-Term
	26 Marks	24 Marks	50 Marks

Pre-requisites: A student should have basic knowledge of integral calculus and ordinary differential equations .

Course Outcomes: At the end of the course, the student will be able to:

C01	Determine the nature of series and Fourier Series of various functions.
CO2	Solve problems related to partial differential equations by various methods.
CO3	Apply partial differential equations for solution of wave equation and heat equation.
CO4	Solve problems related to double and triple integrals, Beta and Gamma functions.

Detailed Syllabus:

Module No.	Contents	Hours
Module 1	Sequence and series, Fourier series, Dirichlet's condition for a Fourier series, Fourier series for functions having points of discontinuity, Fourier series for functions having arbitrary period, Half range series.	10
Module 2	Formation of PDE, Lagrange's linear equations, Partial differential equations of first order, Standard forms, Partial differential equations of second and higher order, Homogeneous partial differential linear equations with constant coefficients, Non-homogeneous linear partial differential equations, Charpit's method.	12
Module 3	Classification of linear partial differential equation of second order, Vibration of a stretched flexible string, Heat flow equation, Wave equation, Solution by the methods of separation of variables.	8
Module 4	Beta & Gamma functions (definition & related problems), Differentiation under the integral sign (Leibnitz rule). Jacobians, Double & Triple integrals, Change of Variables in double integrals.	12

- 1. Jain, R.K and Iyengar, S.R.K.(2008) *Advanced Engineering Mathematics*, Third Edition, Narosa Pub. House.
- 2. Kreyszig, E. (2006). Advanced Engineering Mathematics, 9th Edition, John Wiley Sons.
- 3. Piaggio, H.T.H. Differential Equations, CBS publishers.